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Memory effects on the statistics of fragmentation
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We investigate through extensive molecular dynamics simulations the fragmentation process of two-
dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment
to the radial component of the particles’ velocities. We study the effect of temperature of the thermalized
system as well as the influence of the impact energy of the “explosion” event on the statistics of mass
fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz
F(m)oemt™® exp—(m/mg)?, wherem is the massm, and y are cutoff parameters, andis a scaling exponent
that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic
scaling exponend for each macroscopic phase of the thermalized system, i.e., that the nonuniversal behavior
of the fragmentation process is dictated by the state of the system before it breaks down.
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[. INTRODUCTION tion, criticality could be tuned at a nonzero impact energy
[12]. In this way, the fragment-size distribution should sat-
The process of breaking solids into smaller pieces hassfy a scaling form similar to that of the cluster-size distribu-
been the subject of deep thoughts since the time of thdon of percolation cluster$l3], but belonging to another
Greeks, who tried to understand the building blocks of matuniversality clas$9,14]. From the results of such numerical
ter. Not going so far away in time or neither in the area ofmodels it has been suggested that there exists a critical im-
particle physics, the fragmentation process is still an imporparted energy, below which the object to be fragmented is
tant problem to study since it is a main issue in current probenly damaged, and above which it breaks down into numer-
lems in our day-to-day life. For instance, to understand whyous smaller pieces. The transition between daenagedto
or how a material breaks is relevant in the development ofhe fragmentedstates behaves as a critical point, with the
new technological devices or in geological problefhs?]. fragment size distribution displaying a scaling form similar
Because it is such a significant issue, a large number of exe that described in percolation thedy3]. The same depen-
periments in fragmentation have been performed in order tdence on the impact energy for the fragmented state has been
collect data of fractures in many types of materials and obfound very recently in another numerical model for the frag-
jects forms[1-6]. The number of theoretical articles on this mentation of a circular disk by projectil¢45] as well as in
topic is no smaller. The main focus of recent studies in thighe experimental fragmentation of shell.
field is based on molecular dynami¢®D) simulations, In the present work our aim is to investigate through mo-
where the results show an ubiquitous scaling behavior in théecular dynamics simulations the effect of different initial
distribution of the mass fragmenfs(m) ~m™¢, with the ex-  conditions(e.g., temperature and impact energy the mass
ponenta depending on the dimensionality and initial param-distribution of fragments generated after an “explosion”
eters of the systerfb,7]. takes place. One of our goals is to show that the scaling
The aforementioned experimental and theoretical studielbehavior observed in the statistics of mass fragments is non-
have shown that the mass distribution belongs to the samgniversal and that this nonuniversality has a direct corre-
universality class for large enough input energies when thepondence with the state of the system prior to fragmentation
MD system breaks into smaller piecgk4,6,7,8,9. How-  process. In Sec. Il we describe the details of the model and
ever, using a molecular dynamics approach Clahgl.[10]  simulations. The results are shown in Sec. I, while the con-
fragmented an object represented as a set of particles intettusions and some perspectives are presented in Sec. V.
acting via the Lennard-Jones potential with the fracture pro-
cess being induced by random initial velocities assigned to
the particles. The resulting steady-state form found for the
cumulative mass distribution displays a typical power-law The fragmentation model used here is based on the one
region, with a nonuniversal exponent that increases with thelescribed in Ref§16,17. The initial state of the object to be
total initial energy given to the system. The same behaviofragmented is a thermalized configuration generated through
has been observed in experimental fragmentation of lon@ standard molecular dynamics simulation in the microca-
glass rod411] and duly interpreted as an indication that the nonical ensemble. The particles interact with each other
fragmentation process is not a self-organizing phenomenonhrough a 6-12 Lennard-Jones pair potential. Since the tem-
contrary to the assumption of Oddershedeal. [4] In con-  perature fluctuates due to energy conservation, the system is
trast to the self-organized criticality paradigm where thebrought to the desired equilibrium temperature through
power law behavior should appear without a control paramproper adjustments of the particle’s velocity during thermal-
eter, there is an interesting claim that, in impact fragmentaization [18]. A neighbor-list method is applied and periodic

Il. MODEL
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boundary conditions are used in all directions. This allows us ¢
to simulate up to 1®particles for a single realization of the
fragmentation system. The results are then taken from ar o T=0.100
average of fifty realizationgthe direction of the initial ve- ] o T=0.425
locities for the particles are different for each sampte a i R, 8 T=0.700
given set of initial conditions, as defined by the value of the -2 oo
temperature, particle density, and energy given to break theg
system apart. This “explosion energy” is specified throughi&_
the parameteR, defined as the ratio between the initial ki- &
netic energy and the initial potential energy of the particle, ™
immediately after the velocities are set according to the -4
equation below,

NS

3+

lagmn(m)

vi(0) =v{ +Cr(0), 1 ST

WhereviT are the initial velocities and;(0) are the initial
positions of the particles, obtained in the thermalization -6,
stage. The second term in the above equation is responsibl log,,m
for an expansion process that is preceded by an explosive
event. The proportionality consta@thas units of inverse of FIG. 1. The log-log plot of cumulative mass distribution of frag-
time and gives a measure of the initial energy imparted to thenentsF(m) for p=0.61,R=0.43, and three different values of tem-
object. This constant is adjusted to give the desired values gferatureT=0.1 (circles, T=0.425(diamond, andT=0.7 (squares
the parameteR. This is achieved by adding a proper pertur- For comparison the dashed line corresponds fto) ~exgd
bation to the velocity of each particle according to E).  —(m/my)?]. The inset shows the corresponding mass distribution
From time zero onward, no energy is added or subtracted to(m), with the solid line representing the best fit.
the systenti.e., no dissipative or driven forces were included
in the systemand the particles’ positions and velocities are F(m) ~ m™ exg - (m/m)”], (3)
now calculated considering free boundary conditions. As a
result, the system expands and the particles are distributed ) .
among clusteréfragments of different masses. Each particle Wherea is a scaling exponent, ant, and y are cutoff pa-
is considered as a monomeric cluster with unitary massiameters. As depicted in Fig. 1 the application of a standard
There are several definitions for a particle clugtE9—21. nonlmez_ir estimation a_Igonthr_n to th_e data s_ets shows that
Here, two particles will belong to the same cluster if they areEd- (3) fits well the scaling region for intermediate masses as
separated by a distance smaller than an arbitrary cutoff, well as Fhe de.caylng cutoff for large fra_gment sizes, which is
=30. We performed tests for different values gf>2 and compatible v_wth a stretched exponential behavior. Therg is
observed no modification in our results. The fragments aréowever a discrepancy between the data and the curve fitted
then classified according to their massand counted to With Eq.(3) atT=0.7 for the region of small fragments. This
enable the calculation of the distributioném) and F(m), ~ c¢an be readily explained in terms of the large “evaporation”
both normalized by the total number of fragments. It is worth"ates at high values of the temperature—an expected effect
mentioning that we stop the simulation when the differencéhat is responsible for the progressive detachment of small
between the distribution of fragment sizes at a given timelusters from the hull of large and medium fragments after
and a later time of the process becomes negligible. This typit-he explosion event. The inset of Fig. 1 shows that the cor-
cally occurs after 10000 MD steps. responding behavior of the distributiomm)=dF(m)/dm
for the three values df is also consistent with scaling ansatz
Eqg. (3), when the parameters used are the same as those

. RESULTS obtained for fitting its integral fornfr(m).
Due to the fluctuations in(m), it is usually more conve- In Fig. 2 we show the profiles of the distributiéim) for
nient to work with the cumulative form of the mass distribu- S€veral values of the temperature in the range<0{0.7
tion defined ag4] and a fixed value op=0.61. When observed in detail, the

diversity in shape of(m) for intermediate and large frag-
(" R ment sizes indicate that the fragmentation process must be
F(m) = Jm n(m’)dn’. ) restricted to a discrete and much smaller number of different
classes of behavior than the variation with an entire spectrum
In Fig. 1 we show the behavior ¢f(m) for fixed values of of thermalization temperatures could suggest. This fact is
the energy parametd®=0.43, system density=0.61, and quantitatively verified when we observe that, after fitting Eq.
three different values of temperatufe As can be seen, the (3) to each data set, the scaling parametecan approxi-
distributions display a region of power-law behavior at inter-mately assume one among only three distinct numerical val-
mediate values ah followed by a typical cutoff due to finite ues for the distributions generated at nine different tempera-
size. From Ref[22], the following expression has been pro- tures. In Fig. 3 we show the variation of the cutoff parameter
posed to describe the behaviorefm): mp with temperature forp=0.61. As the temperature in-
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FIG. 4. Data collapse of the distributidf(m) shown in Fig. 2.
The collapse has been obtained by rescaling the abserssisach
distribution to its corresponding cutoff parameteng, as well as
rescaling the valueB(m) to F(mg).

FIG. 2. Log-log plot ofF(m) for p=0.61,R=0.43, and different
values of temperature.

creases fronT=0.1, my remains approximately constant up

to T=0.375, where it suddenly drops to again become con-

stant, at least up to the maximum value of the temperatur&hat the threefold statistics of mass fragments shown in Fig. 4
! IS a direct consequence of the three distinct phases to which

w in our simulation§;=0.7. This sharp transition i s .
inﬁinges ?hue Sexigtzagegbfoa “critiscsl”atgr:lp?ersaifre "l!})elowthe thermallz_eq ObJECt.S belonged before they have been bro-
which a large clustefi.e., a cluster with size of the order of ken apart. It is m_ter_estlng t(_) note thz_it’ although the collapses
the system siZecan exist. are rather convincing for intermediate a}nq large fra_gn_1ent
In Fig. 4 we show the data collapse obtained by rescalin izes, the apparent divergence characterlzmg the statistics of
the abscissam of each curve shown in Fig. 3 to its corre- mall fragme_nts dl.Je to “evaporatlon’_’ appears to be continu-
sponding estimate of the cutoff parameteg, as well as gt’j%scg?ré%'l?spgve'gh dtaetr:perature within each of the three
rescaling the value§(m to F(my). These results clearly In Fig. 6 we show that the scaling exponents estimated at

reveal the presence of only three groups of distributions.,. ; .
Such a behavior can be explained with the help of the phas(ii,"cferent temperatures foithe gB.SO|.Id phase.ha\./e approxi-
diagram shown in Fig. 5, where the points following the Mately the same valuey=1.02. This behavior is also ob-
vertical dashed line represent the values of temperature used , ,

. - : . - . T T I . T '
in our simulations. From this diagram, we readily deduce ,' :
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T
particles interacting through the Lennard-Jones potential. The

FIG. 3. The behavior of the paramet®p against temperature. points following the vertical dashed line represent the values of
The values of density and the paramdRare the same as in the temperature used in our simulations. Here G means gas, S solid, and

previous figure. L liquid.
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FIG. 6. The variation of the scaling exponemtwith tempera- i
ture. The values of density and the param@&ere the same as in FIG. 8. Log-log plot of the crossover parametay against the
Fig. 2. The circles correspond to the exponents in@HeS phase, ~ €N€M9Y dlffe_rence(R—RO) for MD systems thermalized wittp
the squares are the exponents in el phase, and the triangles =0.61 andl=0.1.
are the scaling exponents for thephase.

. _ =a(R-R)*, 4

served for the gasliquid phase, but witle=1.12. The large mo R
variation seen for the L phase reflects the already mentioned .
“evaporation” phenomenon. where a=640.0+0.1 is a prefactor and the exponeht

The situation becomes entirely different when we analyze:0'§7i0'02' It is interesting to note that even though the
the influence of the energy parameRon the statistics of _scallng presented in Fig. 8 looks similar to the one presented
the fragmentation process. In Fig. 7 we show the distribu!" Ref:s._l[_%]&lﬂ, here we QO not hf:f:\ve thhe sq-callled c;jamak?ed
tions F(m) computed for MD systems thermalized with tem- state. ‘ne parameteR, is an offset that is re atg to the
peratureT=0.1, particle densityp=0.61, and for different competition between the thermal energy of motion and the
values ofR=0 1 0.2 03 04.05 0.6 ’10 20.3.0 and 4.0ENergy that holds the system together, i.e., the ratio between
From the nonli,near, fittir’19 o;‘ qu(3) t6 ea’ch data ’set we the "!’?Q“C energy and the _potential energy just before_ the
notice that, while the scaling exponent remains apprc)Xi_\/elocmes are settled according to Edj) and the boundary is

' I - lifted.

mately constant ak = 1.02,m, changes significantly witR. . . .
Precigely as shown in FingOs the 3ecayr?Q;with Rycan be Using Eq.(4) and its estimated parameters to rescale the
described in terms of a pdwér law data presented in Fig. 7, we show in Fig. 9 that the distribu-
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FIG. 7. Log-log plot of the cumulative distributioR(m) for FIG. 9. Data collapse of the distributidf(m) for p=0.61, T
values of the energy paramet@rranging fromR=0.1 to 4.0. The =0.1, and different values of the energy input-or comparison the
MD systems have been thermalized witk0.1 andp=0.61. dashed line corresponds t@m) ~ exd —(m/mg)?].
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tions for all values oR can be nicely represented by a single the thermalized object that is responsible for the difference in
data-collapsed curve. Of course, this should only be valid fothese scaling exponents. It means that the process studied
systems subjected to the same thermalization process, i.e.,itre can be rather sensitive to the previous state of the sys-

p andT are kept constant. tem, although it introduces a significant disturbance from an
energetic point of view. As a consequence, fragmentation
IV. CONCLUSIONS carries memory. Finally, we turned our attention to the varia-

) tion of the parameteR. Differently to the previous case, we

~In summary, we performed an extensive study of a two-ptained a unique scaling exponent for the cumulative mass
dimensional fragmentation process through molecular dygistripution for different values oR. This result is in good
namics simulations. Specifically, we have shown how th&ygreement with previous studies in the literature indicating
statistics of the fragmentation process dependipthe ther-  some sort of universal behavior present in fragmentation pro-
malization temperature of the system before its breakdowrbesseiw].
and(ii) the energy imparted to the system to induce fragmen-
tation. In the first case, we verified that the cumulative mass ACKNOWLEDGMENTS
distribution follows a power law for intermediate masses,
with an exponent that depends on the region of temperature This work has been supported by CNPq, CAPES, and
considered. More precisely, we showed that it is the phase GFUNCAP.
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