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We investigate through extensive molecular dynamics simulations the fragmentation process of two-
dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment
to the radial component of the particles’ velocities. We study the effect of temperature of the thermalized
system as well as the influence of the impact energy of the “explosion” event on the statistics of mass
fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz
Fsmd~m1−a exp−sm/m0dg, wherem is the mass,m0 andg are cutoff parameters, anda is a scaling exponent
that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic
scaling exponenta for each macroscopic phase of the thermalized system, i.e., that the nonuniversal behavior
of the fragmentation process is dictated by the state of the system before it breaks down.
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I. INTRODUCTION

The process of breaking solids into smaller pieces has
been the subject of deep thoughts since the time of the
Greeks, who tried to understand the building blocks of mat-
ter. Not going so far away in time or neither in the area of
particle physics, the fragmentation process is still an impor-
tant problem to study since it is a main issue in current prob-
lems in our day-to-day life. For instance, to understand why
or how a material breaks is relevant in the development of
new technological devices or in geological problemsf1,2g.
Because it is such a significant issue, a large number of ex-
periments in fragmentation have been performed in order to
collect data of fractures in many types of materials and ob-
jects formsf1–6g. The number of theoretical articles on this
topic is no smaller. The main focus of recent studies in this
field is based on molecular dynamicssMDd simulations,
where the results show an ubiquitous scaling behavior in the
distribution of the mass fragments,Fsmd,m−a, with the ex-
ponenta depending on the dimensionality and initial param-
eters of the systemf5,7g.

The aforementioned experimental and theoretical studies
have shown that the mass distribution belongs to the same
universality class for large enough input energies when the
MD system breaks into smaller piecesf1,4,6,7,8,9g. How-
ever, using a molecular dynamics approach Chinget al. f10g
fragmented an object represented as a set of particles inter-
acting via the Lennard-Jones potential with the fracture pro-
cess being induced by random initial velocities assigned to
the particles. The resulting steady-state form found for the
cumulative mass distribution displays a typical power-law
region, with a nonuniversal exponent that increases with the
total initial energy given to the system. The same behavior
has been observed in experimental fragmentation of long
glass rodsf11g and duly interpreted as an indication that the
fragmentation process is not a self-organizing phenomenon,
contrary to the assumption of Oddershedeet al. f4g In con-
trast to the self-organized criticality paradigm where the
power law behavior should appear without a control param-
eter, there is an interesting claim that, in impact fragmenta-

tion, criticality could be tuned at a nonzero impact energy
f12g. In this way, the fragment-size distribution should sat-
isfy a scaling form similar to that of the cluster-size distribu-
tion of percolation clustersf13g, but belonging to another
universality classf9,14g. From the results of such numerical
models it has been suggested that there exists a critical im-
parted energy, below which the object to be fragmented is
only damaged, and above which it breaks down into numer-
ous smaller pieces. The transition between thedamagedto
the fragmentedstates behaves as a critical point, with the
fragment size distribution displaying a scaling form similar
to that described in percolation theoryf13g. The same depen-
dence on the impact energy for the fragmented state has been
found very recently in another numerical model for the frag-
mentation of a circular disk by projectilesf15g as well as in
the experimental fragmentation of shellsf2g.

In the present work our aim is to investigate through mo-
lecular dynamics simulations the effect of different initial
conditionsse.g., temperature and impact energyd on the mass
distribution of fragments generated after an “explosion”
takes place. One of our goals is to show that the scaling
behavior observed in the statistics of mass fragments is non-
universal and that this nonuniversality has a direct corre-
spondence with the state of the system prior to fragmentation
process. In Sec. II we describe the details of the model and
simulations. The results are shown in Sec. III, while the con-
clusions and some perspectives are presented in Sec. IV.

II. MODEL

The fragmentation model used here is based on the one
described in Refs.f16,17g. The initial state of the object to be
fragmented is a thermalized configuration generated through
a standard molecular dynamics simulation in the microca-
nonical ensemble. The particles interact with each other
through a 6-12 Lennard-Jones pair potential. Since the tem-
perature fluctuates due to energy conservation, the system is
brought to the desired equilibrium temperature through
proper adjustments of the particle’s velocity during thermal-
ization f18g. A neighbor-list method is applied and periodic
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boundary conditions are used in all directions. This allows us
to simulate up to 105 particles for a single realization of the
fragmentation system. The results are then taken from an
average of fifty realizationssthe direction of the initial ve-
locities for the particles are different for each sampled for a
given set of initial conditions, as defined by the value of the
temperature, particle density, and energy given to break the
system apart. This “explosion energy” is specified through
the parameterR, defined as the ratio between the initial ki-
netic energy and the initial potential energy of the particle,
immediately after the velocities are set according to the
equation below,

vis0d = vi
T + Cr is0d, s1d

where vi
T are the initial velocities andr is0d are the initial

positions of the particles, obtained in the thermalization
stage. The second term in the above equation is responsible
for an expansion process that is preceded by an explosive
event. The proportionality constantC has units of inverse of
time and gives a measure of the initial energy imparted to the
object. This constant is adjusted to give the desired values of
the parameterR. This is achieved by adding a proper pertur-
bation to the velocity of each particle according to Eq.s1d.
From time zero onward, no energy is added or subtracted to
the systemsi.e., no dissipative or driven forces were included
in the systemd and the particles’ positions and velocities are
now calculated considering free boundary conditions. As a
result, the system expands and the particles are distributed
among clusterssfragmentsd of different masses. Each particle
is considered as a monomeric cluster with unitary mass.
There are several definitions for a particle clusterf19–21g.
Here, two particles will belong to the same cluster if they are
separated by a distance smaller than an arbitrary cutoff,rc
=3s. We performed tests for different values ofrc.2 and
observed no modification in our results. The fragments are
then classified according to their massm and counted to
enable the calculation of the distributionsnsmd and Fsmd,
both normalized by the total number of fragments. It is worth
mentioning that we stop the simulation when the difference
between the distribution of fragment sizes at a given time
and a later time of the process becomes negligible. This typi-
cally occurs after 10000 MD steps.

III. RESULTS

Due to the fluctuations innsmd, it is usually more conve-
nient to work with the cumulative form of the mass distribu-
tion defined asf4g

Fsmd =E
m

`

nsm8ddm8. s2d

In Fig. 1 we show the behavior ofFsmd for fixed values of
the energy parameterR=0.43, system densityr=0.61, and
three different values of temperatureT. As can be seen, the
distributions display a region of power-law behavior at inter-
mediate values ofm followed by a typical cutoff due to finite
size. From Ref.f22g, the following expression has been pro-
posed to describe the behavior ofFsmd:

Fsmd , m1−a expf− sm/m0dgg, s3d

wherea is a scaling exponent, andm0 andg are cutoff pa-
rameters. As depicted in Fig. 1 the application of a standard
nonlinear estimation algorithm to the data sets shows that
Eq. s3d fits well the scaling region for intermediate masses as
well as the decaying cutoff for large fragment sizes, which is
compatible with a stretched exponential behavior. There is
however a discrepancy between the data and the curve fitted
with Eq. s3d at T=0.7 for the region of small fragments. This
can be readily explained in terms of the large “evaporation”
rates at high values of the temperature—an expected effect
that is responsible for the progressive detachment of small
clusters from the hull of large and medium fragments after
the explosion event. The inset of Fig. 1 shows that the cor-
responding behavior of the distributionnsmd;dFsmd /dm
for the three values ofT is also consistent with scaling ansatz
Eq. s3d, when the parameters used are the same as those
obtained for fitting its integral formFsmd.

In Fig. 2 we show the profiles of the distributionFsmd for
several values of the temperature in the range 0.1øTø0.7
and a fixed value ofr=0.61. When observed in detail, the
diversity in shape ofFsmd for intermediate and large frag-
ment sizes indicate that the fragmentation process must be
restricted to a discrete and much smaller number of different
classes of behavior than the variation with an entire spectrum
of thermalization temperatures could suggest. This fact is
quantitatively verified when we observe that, after fitting Eq.
s3d to each data set, the scaling parametera can approxi-
mately assume one among only three distinct numerical val-
ues for the distributions generated at nine different tempera-
tures. In Fig. 3 we show the variation of the cutoff parameter
m0 with temperature forr=0.61. As the temperature in-

FIG. 1. The log-log plot of cumulative mass distribution of frag-
mentsFsmd for r=0.61,R=0.43, and three different values of tem-
peratureT=0.1 scirclesd, T=0.425sdiamondd, andT=0.7 ssquaresd.
For comparison the dashed line corresponds tofsmd,expf
−sm/m0dgg. The inset shows the corresponding mass distribution
nsmd, with the solid line representing the best fit.
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creases fromT=0.1, m0 remains approximately constant up
to T<0.375, where it suddenly drops to again become con-
stant, at least up to the maximum value of the temperature
we use in our simulations,T=0.7. This sharp transition inm0
indicates the existence of a “critical” temperature below
which a large clustersi.e., a cluster with size of the order of
the system sized can exist.

In Fig. 4 we show the data collapse obtained by rescaling
the abscissasm of each curve shown in Fig. 3 to its corre-
sponding estimate of the cutoff parameterm0, as well as
rescaling the valuesFsmd to Fsm0d. These results clearly
reveal the presence of only three groups of distributions.
Such a behavior can be explained with the help of the phase
diagram shown in Fig. 5, where the points following the
vertical dashed line represent the values of temperature used
in our simulations. From this diagram, we readily deduce

that the threefold statistics of mass fragments shown in Fig. 4
is a direct consequence of the three distinct phases to which
the thermalized objects belonged before they have been bro-
ken apart. It is interesting to note that, although the collapses
are rather convincing for intermediate and large fragment
sizes, the apparent divergence characterizing the statistics of
small fragments due to “evaporation” appears to be continu-
ously changing with temperature within each of the three
groups of collapsed data.

In Fig. 6 we show that the scaling exponents estimated at
different temperatures for the gas1solid phase have approxi-
mately the same value,a<1.02. This behavior is also ob-

FIG. 2. Log-log plot ofFsmd for r=0.61,R=0.43, and different
values of temperature.

FIG. 3. The behavior of the parameterm0 against temperature.
The values of density and the parameterR are the same as in the
previous figure.

FIG. 4. Data collapse of the distributionFsmd shown in Fig. 2.
The collapse has been obtained by rescaling the abscissasm of each
distribution to its corresponding cutoff parametersm0, as well as
rescaling the valuesFsmd to Fsm0d.

FIG. 5. The phase diagram for a two-dimensional system with
particles interacting through the Lennard-Jones potential. The
points following the vertical dashed line represent the values of
temperature used in our simulations. Here G means gas, S solid, and
L liquid.
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served for the gas1liquid phase, but witha<1.12. The large
variation seen for the L phase reflects the already mentioned
“evaporation” phenomenon.

The situation becomes entirely different when we analyze
the influence of the energy parameterR on the statistics of
the fragmentation process. In Fig. 7 we show the distribu-
tionsFsmd computed for MD systems thermalized with tem-
peratureT=0.1, particle densityr=0.61, and for different
values ofR=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0, 2.0, 3.0, and 4.0.
From the nonlinear fitting of Eq.s3d to each data set we
notice that, while the scaling exponent remains approxi-
mately constant ata<1.02,m0 changes significantly withR.
Precisely, as shown in Fig. 8, the decay ofm0 with R can be
described in terms of a power law

m0 = asR− R0d−b, s4d

where a=640.0±0.1 is a prefactor and the exponentb
=0.67±0.02. It is interesting to note that even though the
scaling presented in Fig. 8 looks similar to the one presented
in Refs.f12,15g, here we do not have the so-called “damaged
state.” The parameterR0 is an offset that is related to the
competition between the thermal energy of motion and the
energy that holds the system together, i.e., the ratio between
the kinetic energy and the potential energy just before the
velocities are settled according to Eq.s1d and the boundary is
lifted.

Using Eq.s4d and its estimated parameters to rescale the
data presented in Fig. 7, we show in Fig. 9 that the distribu-

FIG. 6. The variation of the scaling exponenta with tempera-
ture. The values of density and the parameterR are the same as in
Fig. 2. The circles correspond to the exponents in theG+S phase,
the squares are the exponents in theG+L phase, and the triangles
are the scaling exponents for theL phase.

FIG. 7. Log-log plot of the cumulative distributionFsmd for
values of the energy parameterR ranging fromR=0.1 to 4.0. The
MD systems have been thermalized withT=0.1 andr=0.61.

FIG. 8. Log-log plot of the crossover parameterm0 against the
energy differencesR−R0d for MD systems thermalized withr
=0.61 andT=0.1.

FIG. 9. Data collapse of the distributionFsmd for r=0.61, T
=0.1, and different values of the energy inputR. For comparison the
dashed line corresponds tofsmd,expf−sm/m0dgg.
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tions for all values ofR can be nicely represented by a single
data-collapsed curve. Of course, this should only be valid for
systems subjected to the same thermalization process, i.e., if
r andT are kept constant.

IV. CONCLUSIONS

In summary, we performed an extensive study of a two-
dimensional fragmentation process through molecular dy-
namics simulations. Specifically, we have shown how the
statistics of the fragmentation process depend onsid the ther-
malization temperature of the system before its breakdown,
andsii d the energy imparted to the system to induce fragmen-
tation. In the first case, we verified that the cumulative mass
distribution follows a power law for intermediate masses,
with an exponent that depends on the region of temperature
considered. More precisely, we showed that it is the phase of

the thermalized object that is responsible for the difference in
these scaling exponents. It means that the process studied
here can be rather sensitive to the previous state of the sys-
tem, although it introduces a significant disturbance from an
energetic point of view. As a consequence, fragmentation
carries memory. Finally, we turned our attention to the varia-
tion of the parameterR. Differently to the previous case, we
obtained a unique scaling exponent for the cumulative mass
distribution for different values ofR. This result is in good
agreement with previous studies in the literature indicating
some sort of universal behavior present in fragmentation pro-
cessesf15g.
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